
FrontLoader
distributed load testing

What is it?

FrontLoader is a flexible distributed load
tester with support for system monitoring
and a full web interface. Originally designed
for testing RTMP services, it is particularly
suited for protocols that require long-lived
connections. However, short-lived protocols
like HTTP can be tested easily as well.

Features

• Includes a powerful monitoring framework that
lets you collect real-time information from a
remote server (e.g. CPU usage, memory usage) or
even an entire cluster.

• An extensible connection system that makes
testing almost any kind of service possible

• Configure and run your tests using the web
interface. Then watch the results in real-time.

• Statistical analysis of the resulting data lets you see
what factors affect your cluster's performance.

Scenarios
monitor do
 local # use local monitoring (the default)
 role "web" # monitor hosts in the web role using these settings
 role "mysql" # ditto for mysql role
 host "12.42.44.12" # add a single host to monitor

 watch :cpu => 2 # run the CPU watch with priority 2
 watch :mem => 1
 watch :socket => 0.5
end

test :time => 120, :repeat => 1 do
 urls = ["http://site.com/page1", "http://site.com/page2"]
 500.times{|_|
 start :HttpConnector, :url => urls[rand % url.size]
 wait rand
 }
 wait_until_done
end

http://site.com/page1
http://site.com/page1
http://site.com/page2
http://site.com/page2

Watchers

class SocketWatcher < FrontLoader::Watcher
 name "socket"

 shell "ls -l /proc/*/fd | grep socket | wc -l", :sudo => true do |count|
 log :sockets => count.to_i unless count.to_i == 0
 end
end

Connectors
require 'em-http'

class HTTPConnector < FrontLoader::Connector
 option :url, :type => :text, :help => "The URL that will be
accessed"

 def start opt
 @connections ||= []
 @counter ||= 0
 counter = (@counter += 1)
 http = EM::HttpRequest.new(opt[:url]).get
 log_started :id => counter
 http.callback do
 log_connected :id => counter
 log_disconnected :id => counter
 @connections.delete http
 end
 http.errback do
 log_failed :id => counter
 end
 @connections << http
 end

 def stop
 @connections.each{|c| c.close_connection} if @connections
 end
end

demo

thanks to

for sponsoring this work

